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Introduction
Over the past few decades, there has been 
much research on the adverse effects of ambi-
ent particulate matter (PM). A number of 
studies have used fine PM (PM2.5; particles 
≤ 2.5 μm in aerodynamic diameter) as an 
exposure metric and estimated the effects of 
PM2.5 on human health (Laden et al. 2006; 
Ostro et al. 2006; Pope and Dockery 2006; 
Zanobetti and Schwartz 2009). Meanwhile, 
researchers have found that some PM2.5 spe-
cies significantly modify PM2.5-related effects 
(Franklin et al. 2008; Lippmann et al. 2006; 
Zanobetti et al. 2009). PM2.5 consists of 
many chemical components that originate 
from various sources, such as traffic, biomass 
burning, and coal combustion. The U.S. 
National Research Council has emphasized 
the importance of examining the risk of PM 
species (National Research Council 2004). 
Determining the differential toxicity of PM2.5 
species and identifying species with greatest 
toxicity is of great importance to emission-
control strategies and regulations.

The U.S. Environmental Protection 
Agency (EPA) established the PM2.5 
Speciation Trends Network (http://www.
epa.gov/ttnamti1/speciepg.html) in 2000. 
Speciation sampling was conducted every 
third or sixth day, which limits statisti-
cal power for analysis of responses to acute 

exposure and also prevents the examination 
of, for example, 2-day moving averages 
of exposure, which most studies find more 
strongly associated with mortality and hospital 
admissions than single-day exposures. As a 
result, a limited number of studies have inves-
tigated the toxicity of PM2.5 components. 
These investigations have reported numer-
ous components that may be responsible 
for particle toxicity, such as elemental and 
organic carbon, sulfate, nitrate, and metals 
including zinc, nickel, iron, potassium, and 
chromium (Atkinson et al. 2010; Bell et al. 
2009; Franklin et al. 2008; Ostro et al. 2006; 
Valdes et al. 2012; Zhou et al. 2011).

Recently, Krall et al. (2013) reported 
on the association of 1-day average con-
centrations of species from the speciation 
network and mortality in 72 cities for the 
years 2000–2005. In this paper we address 
a similar question, but with the following 
differences. First, Krall et al. (2013) analyzed 
PM components without controlling for PM 
mass risks. As pointed out by Mostofsky et al. 
(2012), it is possible to find associations for 
components because they are highly corre-
lated with mass, and not because they are 
themselves particularly toxic. Second, Krall 
et al. (2013) focused on single-day exposures. 
PM2.5 mortality studies have consistently 
reported that the associations are spread over 

> 1 day. Thus, when one uses separate time 
series for components that are measured 
only 1 day in 6 or 1 day in 3, this will bias 
downward estimates, possibly more for some 
components than others. In addition, the 
loss of two-thirds to five-sixths of the data 
 substantially reduces power.

U.S. adults—particularly the elderly, who 
dominate mortality statistics—spend approxi-
mately 90% of their time indoors (U.S. EPA 
1989). Although particles penetrate indoors, 
the infiltration rates vary with the extent to 
which windows and doors are open, which 
in turn can vary with local temperature 
and may therefore modify the association. 
Previous studies have reported such modifica-
tion (Franklin et al. 2008; Stafoggia et al. 
2008; Zanobetti et al. 2009). In this paper we 
address these issues and also examine more 
species, add an additional year of observation, 
and look at specific causes of death.

Materials and Methods
Study sites. We included 75 U.S. cities in our 
study (see Supplemental Material, Table S1). 
Cities of interest were selected based on the 
availability of daily mortality, PM2.5 mass, 
and speciation data for at least 400 days 
between 2000 and 2006.

Environmental data. We conducted 
county-level analysis for most cities because 
the city lies within a single county, and used 
multiple counties for a city whose popula-
tion extends beyond the boundary of one 
county (Zanobetti and Schwartz 2009). We 
obtained PM2.5 mass and species concentra-
tion data from the U.S. EPA Air Quality 
System Technology Transfer Network 
(http://www.epa.gov/ttn/airs/airsaqs/). 
PM2.5 mass samples were collected daily in 
most of the cities, whereas the speciation 
monitoring sites were operated on a 1-in-3 
or 1-in-6 day schedule. Most of the cities had 
a single monitor. For cities with more than 
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one sampling site, concentration data were 
averaged. Our analysis focused on organic 
carbon (OC), elemental carbon (EC), sodium 
(Na), aluminum (Al), silicon (Si), sulfur (S), 
potassium (K), calcium (Ca), vanadium (V), 
iron (Fe), nickel (Ni), copper (Cu), and zinc 
(Zn) because these species have been shown 
to be representative of several sources (e.g., 
motor vehicles, oil combustion, coal combus-
tion, wood burning, sea salt, and road dust) 
and their concentration levels are mostly 
above the method detection limits (Hopke 
et al. 2006). Furthermore, they have been 
studied by previous epidemiologic and toxi-
cological studies (Bell et al. 2009; Franklin 
et al. 2008; Ostro et al. 2006; Zanobetti et al. 
2009; Zhou et al. 2011). Monthly average 
proportions between each component and 
PM2.5 mass were calculated for each city by 
averaging over the proportions of species to 
mass in each month, respectively.

Daily mean temperature in every city 
was obtained from the National Oceanic 
and Atmospheric Administration (http://
www.noaa.gov/). We used 24-hr average 
temperature data from the closest weather 
station to the center of the city. Percent green 
space data were obtained from the National 
Land Cover Database, Multi-Resolution Land 
Characteristics Consortium (http://www.
mrlc.gov/).

Health data. Daily mortality data were 
obtained from National Center for Health 
Statistics (http://www.cdc.gov/nchs/). 
We examined nonaccidental deaths due to 
all causes and specific diseases, which were 
derived from the International Statistical 
Classification of Disease, 10th Revision (World 
Health Organization 2007) codes as follows: 
all causes (ICD-10, A00–R99), cardio vascular 
diseases (ICD-10, I01–I59), respiratory 
diseases (ICD-10, J00–J99), myocardial 
infarction (ICD-10, I21–I22), and stroke 
(ICD-10, I60–I69).

We investigated several behavioral and 
other risk factors that have been reported 
to impact health (Baja et al. 2010; Dogra 
et al. 2007; Dwyer-Lindgren et al. 2013; 
Mora et al. 2007), including diabetes, being 
overweight or obese (i.e., body mass index 
≥ 25), smoking, quitting smoking, alcohol 
consumption (having > two drinks per day), 
asthma, and leisure time physical activity, 
from the Behavioral Risk Factor Surveillance 
System (BRFSS) (Centers for Disease Control 
and Prevention 2006). We applied county-
level weighting methodology to obtain 
county-level percentages of these variables in 
2006. For counties that were not available, 
we used data from the closest metropolitan 
or micropolitan statistical area (MMSA) and 
applied MMSA-level weighting methodology.

Statistical methods. We applied a two-
stage analysis in our study. In the first stage, 

we used a city-specific season-stratified time-
series analysis using Poisson regression in a 
generalized additive model (GAM) to esti-
mate the association between daily mortality 
and the mean of PM2.5 mass on the day of 
death and the day before death in each city 
and each season (defined as spring, March–
May; summer, June–August; fall, September–
November; winter, December–February). We 
controlled for time trend with a natural cubic 
regression spline with 1.5 degrees of free-
dom (df) per season per year, for day of the 
week with indicator variables, and for daily 
temperature on the same day (lag 0) and on 
the previous day (lag 1) with a natural cubic 
spline with 3 df for each. For every species, 
we calculated the monthly average species-
to-PM2.5 proportions for each month as a 
solution to the missing speciation data prob-
lem due to the 1-in-6 or 1-in-3 day sampling 
frequency. We then added, one at the time, 
the interaction terms between PM2.5 and the 
monthly average species-to-PM2.5 proportions 
of each individual species (Valdes et al. 2012). 
The model is as below:

LogE(Yt) = Intercept + ns(time, df )  
 + ns(temperaturet, df )  
 + ns(temperaturet–1, df )  
 + day of the week  
 + αZt–1,t + βpi + γZt–1,tpi, [1]

where, E(Yt) is the expected death count 
at day t, ns is the natural cubic splines, 
Zt–1,t indicates 2-day averaged concentration 
of PM2.5 at day t–1 and t, and pi is the mean 
monthly proportion of species i to mass.

By using an interaction with the monthly 
mean ratio, we avoided losing most of the 
daily observations, because we were able to 
use more than 1 day’s exposure, and con-
trol for PM mass. Although the use of the 
monthly ratio introduces some error in that 
variable, much of the variation in species 
mass is across cities, and between months 
within cities. For example, OC, sulfate, and 
nitrate are products of photochemical reac-
tions whose rates are temperature dependent, 
and this varies substantially across the United 
States and differently by month in different 
locations (Baker and Scheff 2007; de Gouw 
et al. 2005). If a species ratio is not signifi-
cant in this analysis, that does not mean that 
the species has no effect; it means its effect 
is not different from the average PM effect. 
A species with low or no toxicity would be 
expected to have a significant negative inter-
action term.

In the second stage of the analysis, we 
conducted a multivariate random effects 
meta-analysis and combined the 300 (i.e., 
75 cities × 4 seasons) city–season specific 
effect estimates to obtain an overall associa-
tion between PM2.5 mass and its interaction 

with each species with mortality across 
all 75 cities:

 Yi = XBi, [2]

where, Y i is a (300 × 2) matrix, whose first 
column contains 300 city–season specific 
coefficients for PM2.5 and the second column 
contains 300 city–season specific coefficients 
for interaction with species i; X is a (300 × 4) 
matrix for intercept, linear, quadratic, and 
cubic temperature; and Bi indicates a (4 × 2) 
matrix of meta-regression coefficient for 
PM2.5 and for interaction with species i.

It has been shown that high ventilation is 
seen at mild temperatures whereas low ven-
tilation is seen at high and low temperatures 
(Koutrakis et al. 2005). Assuming that PM 
effect would not drop consistently as tempera-
ture increases, we added a cubic term in the 
model to allow for a plateau. We also exam-
ined whether the BRFSS factors modified 
PM2.5 effects. The model is:

β̂is = β0 + β1tis + β2tis2 + β3tis3 + β4BRFSSi, 
 [3]

where β̂is is the estimated PM2.5 coefficient 
for city i in season s, tis is the centered tem-
perature (i.e., temperature – mean tempera-
ture) for city i in season s, and BRFSSi is the 
BRFSS variable in city i. To estimate the 
effect of individual species, we performed the 
same meta-regression, but with the coefficient 
of the interaction term for species as the out-
come being modeled. Here again we adjusted 
for city–season mean temperature as a sur-
rogate for air exchange. We also investigated 
spatial variations between cities by focusing 
on a single outcome and exposure season to 
evaluate the effects in each city by mean expo-
sure in that season for each city.

The effect estimates for PM2.5 were 
expressed as the percent change in mortal-
ity associated with a 10-μg/m3 increase in 
the 2-day averaged concentration of PM2.5 
mass, for comparability with most previous 
studies. We expressed the effect of species on 
mortality as the estimated percent increase in 
mortality at the 10th and 90th percentile of 
distribution of species-to-PM2.5 proportion 
for each species, holding the PM2.5 increase 
constant at 10 μg/m3.

Data management was performed with 
SAS version 9.1 (SAS Institute Inc., Cary, 
NC), and regression analysis with R version 
3.0.0 (http://www.r-project.org/).

Results
In this study, we examined 4,473,519 all-
cause deaths, of which 1,429,968 were car-
diovascular disease (CVD), 308,235 mycardial 
infarction (MI), 255,430 stroke, and 436,800 
respiratory deaths.
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Table 1 summarizes daily mortality, 
PM2.5, and temperature in all cities. On aver-
age, there were 28 nonaccidental deaths per 
day. Daily death count by season was higher 
in the winter (n = 31) and spring (n = 28). 
Among the causes of interest, CVD killed the 
most people on average (9/day), followed by 
respiratory diseases (3/day). The overall mean 
concentration of PM2.5 was 13.3 μg/m3. PM2.5 
mean concentration was highest in the sum-
mer (15.0 μg/m3) and lowest in the spring 
(11.6 μg/m3). Some of the species exhibited 
strong seasonal variability. For example, 
sulfur varied from 798 ng/m3 in the winter 

to 1,669 ng/m3 in the summer, with larger 
variations in some cities.

The distributions of monthly average 
proportions of PM2.5 species are shown in 
Table 2. OC had the largest mean proportion 
(37.9%), followed by sulfur (8.78%) and EC 
(6.31%). The mean proportions for all the 
metals were < 1% of mass concentration.

Table 3 presents the estimated percent 
increase mortality for a 10-μg/m3 increase 
in 2-day averaged PM2.5 across the 75 cities. 
We found statistically significant associa-
tions between PM2.5 and mortality. A 1.18% 
(95% CI: 0.93, 1.44%) increase in all-cause 

mortality was associated with a 10-μg/m3 
increase in the 2-day averaged concentration 
of PM2.5. The greatest effect estimate effect 
was observed for stroke mortality (1.76%; 
95% CI: 1.01, 2.52%), followed by respira-
tory deaths (1.71%; 95% CI: 1.06, 2.35%). 
We observed seasonal variations in PM2.5 
effects (see Supplemental Material, Figure S1). 
For a 10-μg/m3 increase in 2-day averaged 
PM2.5, the percent increases in all mortality 
categories were greatest in the spring.

Figure 1 shows the effect estimates of 
PM2.5 on all-cause mortality in each city by 
mean spring PM2.5 in each city. We observed 
differential effects across cities.

Figure 2 shows the adjusted estimated 
percent increases in mortality for a 10-μg/m3 
increase in 2-day averaged PM2.5 at the 10th 
or 90th percentile of distribution of the pro-
portions of species. For all-cause mortality, 
interaction terms between PM2.5 and species 
silicon, calcium, and sulfur had a p-value ≤ 0.1. 
We found that a 10-μg/m3 increase in 2-day 
averaged PM2.5 was associated with an increase 
in all-cause mortality of 3.55% (95% CI: 1.35, 
5.81%) at the 90th percentile of distribution of 
the sulfur-to-PM2.5 proportion versus 2.16% 
(95% CI: 1.27, 3.06%) at the 10th percentile 
of the sulfur-to-PM2.5 ratio (see Supplemental 
Material, Table S2). We also found that sili-
con (3.25%; 95% CI: 1.91, 4.62% vs. 1.87%; 
95% CI: 1.42, 2.32%) and calcium (3.42%; 
95% CI: 2.08, 4.77% vs. 1.75%; 95% CI: 
1.34, 2.16%) were associated with higher esti-
mated effects of PM2.5 on all-cause mortality. 
In addition, sulfur was associated with higher 
estimated PM2.5 effect on respiratory deaths. 
The percent increase in respiratory mortality at 
the 90th percentile of the sulfur-to-PM2.5 pro-
portion was 8.96% (95% CI: 1.55, 16.90%), 
vs. 4.44% (95% CI: 1.46, 7.51%) at the 
10th percentile.

Figure 3 indicates the relationship 
between effect estimates and city–season 
temperature, which serves as a surrogate for 
ventilation and thus particle penetration 
indoors. We observed an inverted U-shape 
relationship with a plateau at high tempera-
tures. The p-value for cubic term is 0.06 in 
meta- regression without BRFSS factors and is 
0.07 controlled for smoking and alcohol con-
sumption. The all-cause mortality effect esti-
mates first increase as temperature increases 
and peak around a seasonal average of 10°C. 
After that, they decrease until they reach a 
plateau at around 28°C.

Table 1. Summary (mean ± SD) of daily mortality counts, PM2.5, and temperature across all 75 cities in 
2000–2006.

Variable Overall Spring Summer Fall Winter
Mortality (n)

All causes 28.0 ± 33.9 28.2 ± 33.9 26.0 ± 31.4 27.1 ± 32.5 30.8 ± 37.2
CVD 9.0 ± 12.6 9.1 ± 12.6 8.2 ± 11.5 8.5 ± 11.8 10.0 ± 14.1
MI 1.9 ± 2.9 1.9 ± 2.9 1.8 ± 2.6 1.8 ± 2.7 2.2 ± 3.3
Stroke 1.6 ± 2.2 1.6 ± 2.2 1.5 ± 2.0 1.6 ± 2.1 1.8 ± 2.4
Respiratory diseases 2.7 ± 3.6 2.9 ± 3.7 2.3 ± 3.1 2.4 ± 3.2 3.3 ± 4.4

Temperature (°C) 14.1 ± 10.0 13.4 ± 7.5 24.0 ± 4.1 15.1 ± 7.3 3.6 ± 8.0
PM2.5 (μg/m3) 13.3 ± 8.3 11.6 ± 6.5 15.0 ± 8.8 12.8 ± 8.4 13.9 ± 9.0
PM2.5 speciesa (ng/m3)

OC 4,367 ± 2,752 3,688 ± 1,806 4,590 ± 2,371 4,491 ± 2,716 4,688 ± 3,724
EC 724 ± 590 602 ± 438 628 ± 459 830 ± 647 842 ± 733
Na 80 ± 141 93 ± 165 89 ± 152 66 ± 117 71 ± 122
Al 31 ± 78 31 ± 55 51 ± 128 23 ± 45 15 ± 34
Si 117 ± 177 123 ± 134 171 ± 273 98 ± 125 69 ± 85
S 1,174 ± 1,019 1,066 ± 731 1,669 ± 1,385 1,107 ± 960 798 ± 512
K 79 ± 197 63 ± 49 103 ± 360 69 ± 62 79 ± 103
Ca 65 ± 77 65 ± 68 74 ± 77 68 ± 88 53 ± 72
V 2.5 ± 4.0 2.2 ± 3.4 2.7 ± 4.2 2.7 ± 4.4 2.5 ± 3.8
Fe 102 ± 124 93 ± 127 111 ± 111 108 ± 136 93 ± 121
Ni 2.5 ± 11.6 2.3 ± 6.0 2.2 ± 6.5 2.2 ± 5.7 3.2 ± 21.4
Cu 5.1 ± 8.9 4.2 ± 7.3 5.7 ± 11.5 5.0 ± 7.3 5.4 ± 8.6
Zn 18 ± 57 16 ± 39 16 ± 57 19 ± 53 22 ± 76

aMethod detection limits for species are available online (https://aqs.epa.gov/aqsweb/codes/data/Parameters-
SPECIATION.csv).

Table 2. Distributions of monthly species-to-PM2.5 proportions (%) across all 75 cities.

Species Mean ± SD

Percentile

10th 25th 50th 75th 90th
OC 37.90 ± 16.90 24.60 29.10 35.50 44.10 53.60
EC 6.31 ± 3.45 2.86 3.96 5.51 7.49 10.10
Na 0.82 ± 1.31 0.07 0.20 0.45 0.96 1.90
Al 0.28 ± 0.44 0.03 0.07 0.15 0.31 0.64
Si 1.07 ± 1.22 0.30 0.45 0.70 1.20 2.12
S 8.78 ± 3.80 4.54 6.83 8.96 11.10 12.70
K 0.64 ± 0.52 0.31 0.40 0.53 0.72 0.98
Ca 0.62 ± 0.67 0.17 0.26 0.44 0.73 1.24
V 0.02 ± 0.03 0.00 0.01 0.01 0.03 0.05
Fe 0.89 ± 0.72 0.33 0.47 0.70 1.07 1.57
Ni 0.02 ± 0.06 0.00 0.00 0.01 0.02 0.04
Cu 0.04 ± 0.05 0.01 0.02 0.03 0.05 0.08
Zn 0.15 ± 0.18 0.04 0.06 0.10 0.15 0.24

Table 3. Estimated percent difference in mortality (95% CI) in association with a 10-μg/m3 increase in PM2.5 at lag 0–1 by cause of death and season.

Mortality Overall Spring Summer Fall Winter
All causes 1.18 (0.93, 1.44) 2.85 (2.23, 3.47) 0.85 (0.42, 1.28) 1.17 (0.72, 1.63) 0.46 (0.07, 0.85)
CVD 1.03 (0.65, 1.41) 2.47 (1.52, 3.43) 1.03 (0.38, 1.67) 0.87 (0.33, 1.42) 0.39 (–0.36, 1.14)
MI 1.22 (0.62, 1.82) 2.08 (0.72, 3.46) 1.23 (–0.19, 2.66) 0.81 (–0.32, 1.95) 0.41 (–1.12, 1.96)
Stroke 1.76 (1.01, 2.52) 3.31 (0.49, 6.22) 1.16 (–0.42, 2.76) 1.31 (0.05, 2.58) 1.59 (0.16, 3.03)
Respiratory diseases 1.71 (1.06, 2.35) 4.03 (2.85, 5.21) 1.09 (–0.58, 2.78) 0.58 (–0.39, 1.57) 0.86 (–0.11, 1.84)
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County-level percent of green space, dia-
betes, obesity, asthma, or physical activity did 
not modify the effect of PM2.5 on mortal-
ity. However, among the behavioral factors, 
we found the effects of PM2.5 were higher in 
areas where people smoked more or had two 
drinks or more per day. Specifically, an inter-
quartile range (IQR) increase in the preva-
lence of smokers (8.8%) was associated with 
a 34% increase in estimated PM2.5 effects, 
whereas an IQR increase in the prevalence 
of heavy drinkers (7.0%) was associated with 
an increase of 40% in the estimated effects of 
fine particles.

Discussion
In this nationwide time-series study, we 
estimated the effects of PM2.5 mass and spe-
cies on daily mortality across 75 U.S. cities, 
covering > 4 million deaths. We found that 
an increase in PM2.5 concentration at lag 
day 0–1 was statistically significantly associ-
ated with increased risk of all-cause mortality, 
CVD, MI, stroke, and respiratory mortality. 
We also found that PM2.5-related effects were 
modified by certain species. Furthermore, 
analysis by season indicated that effect esti-
mates were highest in the spring. To inves-
tigate this seasonal pattern we included 
city–season specific temperature in the meta-
regression analysis. These seasonal varia-
tions may affect the characteristics of PM2.5 
mixture and mediate its effects on health 
outcomes (Bell et al. 2007).

Controlling for this potential confounder 
and for PM2.5 mass, we found that a species 
related to coal combustion (i.e., sulfur) was 
associated with higher risks for all-cause but 
particularly respiratory mortality. Sulfur is 
also a marker of regional pollution; thus, it 
may not reflect only exposures to power plant 

emissions. Changes in the proportion of OC 
mass in PM2.5 did not modify its effect on 
mortality for any cause, suggesting this species 
has average toxicity. We found that higher 
silicon or calcium proportions were associ-
ated with increased estimated PM2.5 mor-
tality risks. These crustal elements are often 
elevated near roads and can be a surrogate 
for increased road dust, which in addition 
to those elements contains various organic 
compounds, compounds from tire and brake 
wear, and the like (Rogge et al. 1993). Thus 
they may be a marker for pollution from 
traffic other than EC.

The BRFSS factors we examined were 
on the county level. The distributions of 
prevalence of smoking and heavy drinkers 
(i.e., > two drinks/day) in different cities 
were approximately normal distributed with 
a mean around 30% and 60%, respectively 
(see Supplemental Material, Figure S2). We 
found that cities with more smokers or heavy 
drinkers had larger estimated effects of PM2.5. 
These have not previously been identified as 
susceptibility factors for the effects of particles 
on health, and this requires greater attention.

The magnitudes of effects in our study 
are comparable with those reported by other 
studies. For example, a study that included 
112 U.S. cities reported a 0.98% (95% CI: 
0.75, 1.22%) increase, a 0.85% (95% CI: 
0.46, 1.24%) increase, a 1.18% (95% CI: 
0.48, 1.89%) increase, a 1.78% (95% CI: 
0.96. 2.62%) increase, and a 1.68% (95% CI: 
1.04, 2.33%) increase in all-cause, CVD, 
MI, stroke, and respiratory mortality, respec-
tively, for a 10-μg/m3 increase in 2-day 
averaged PM2.5 (Zanobetti and Schwartz 
2009). Our estimates are slightly higher than 
the ones above and are closer to those by a 
27-city study, which found a 1.21% (95% CI: 

0.29, 2.14%) increase in all-cause mortality, 
a 1.78% (95% CI: 0.20, 3.36%) increase in 
respiratory mortality, and a 1.03% (95% CI: 
0.02, 2.04%) increase in stroke mortality for 
a 10-μg/m3 increase in previous day’s PM2.5 
(Franklin et al. 2007). Our study and these 
two studies used city–season specific models to 
allow for seasonal differences in the effects of 
temperature and day of the week.

The finding that effects were highest in 
the spring is consistent with previous studies 
(Zanobetti and Schwartz 2009; Zeka et al. 
2006). Franklin et al. (2008) found similar 
pattern using linear and quadratic tempera-
ture in the meta-regression. Additionally, we 
included the cubic term, which was margin-
ally significant and led to the small plateau 
at high temperatures. These results indicated 
greater effects for moderate temperatures 
when windows are more likely to be open and 
particle penetration rates are higher.

EC is considered a marker of traffic emis-
sions (Viana et al. 2006). Previous research 
has reported that EC was significantly associ-
ated with increased risk of mortality due to 
all causes or CVD (Bell et al. 2009; Metzger 
et al. 2004; Peng et al. 2009). In this study, we 
did observe that increase in the EC-to-PM2.5 
proportion increased the association between 
PM2.5 and all-cause mortality and CVD mor-
tality in crude meta-regression, but it was 
no longer significant when we controlled for 
city–season temperature. Similarly, two studies 
also controlled for temperature in the meta-
regression and did not find any effect modifica-
tion by EC in the association between PM2.5 
and nonaccidental mortality or hospital admis-
sions for cardiovascular diseases (Franklin et al. 
2008; Zanobetti et al. 2009).

Silicon and calcium, which may be asso-
ciated with soil or road dust, modified the 
effects of PM2.5 on all-cause mortality in our 
study. Crustal elements have been reported to 
have adverse effects on health. For example, 
Ostro et al. (2010) found strong association 
between silicon and mortality; Franklin et al. 
(2008) observed that silicon and aluminum 
were modifiers of the PM2.5–mortality effects. 
Other studies have shown plausible biologi-
cal mechanisms of inflammatory effects of 
road dust containing aluminum and/or sili-
con (Becker et al. 2005; Clarke et al. 2000). 
Additionally, road dust is often coated with 
organic compounds and metals from car 
exhaust, tire wear, and the like (Rogge et al. 
1993), which may contribute to its toxicity.

Nickel, as a marker of oil combustion, was 
reported to have effect modification in the rela-
tionship between PM2.5 and mortality or hos-
pital admissions in previous studies (Franklin 
et al. 2008; Zanobetti et al. 2009), but we did 
not observe any. On average, nickel accounted 
for only 0.02% of the PM2.5 concentration 
in our study. The concentrations of nickel are Figure 1. Spatial variations in estimated PM2.5 effects between cities.
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frequently lower than the method detection 
limit (Burnett et al. 2000), which may make 
us fail to detect its effects. Nevertheless, toxi-
cological research has found evidence on its 
adverse effects (Gao et al. 2004; Lippmann 
et al. 2006). For example, Lippmann et al. 
(2006) found that  atherosclerotic- prone mice 
exposed to concentrated air particles had a 
pronounced acute change in heart rate and 
heart rate variability when nickel was especially 
high. Lippmann et al. (2006) found that nickel 
effects had high exposures due to the residual 
fuel burn in New York City for heating. The 
levels for the entire country are lower.

We observed that the effect of PM2.5 
mass on all-cause and respiratory mortality 
was modified by sulfur. This component is a 
marker of coal combustion emissions, which 
suggests that species derived from coal com-
bustion might have greater toxicity effects 

on mortality, particularly due to respiratory 
diseases. Sulfate is the primary form of sulfur 
in particles. Sulfate has been implicated as a 
major toxic species in PM2.5 (Amdur 1996) 
and reported to be associated with increased 
risk of various mortality outcomes in ear-
lier epidemiological studies (Fairley 1999; 
Hoek et al. 2000; Laden et al. 2000; Mar 
et al. 2000). The importance of sulfates in the 
air may be attributable to the ability of acid 
sulfates to solubilize transition metals, thus 
making them bioavailable (Ghio et al. 1999). 
Studies have found that sulfate was associ-
ated with endothelial dysfunction (O’Neill 
et al. 2005), increased oxidative stress, and 
coagulation (Chuang et al. 2007). These toxi-
cology findings provide plausibility to sulfate 
health effects.

One disappointing aspect of this result is 
that despite the use of 75 cities and almost 

4.5 million deaths, we were unable to distin-
guish much difference in toxicity for many 
of the species we examined. This may reflect 
only modest differences in toxicity, but may 
also reflect more fundamental difficulties in 
identifying differences between many cor-
related exposures with limited measurements 
over time. Evidence of the low power to 
detect differences can be seen in the difference 
between our results for all deaths and results 
for CVD deaths. The pattern of higher esti-
mated effects when PM mass has a larger frac-
tion of silicon, sulfur, and calcium is present 
for CVD deaths as well; but with one-third 
as many deaths, it does not reach significance. 
One option to improve study power might 
be specifically selecting locations with high 
proportions of the species of interest.

There are several limitations in this study. 
First, our ability to capture spatial variability 
is constrained by the location of U.S. EPA 
monitors. A previous study showed moder-
ate to low monitor-to-monitor correlations 
between daily concentrations of several spe-
cies (arsenic, EC, and nickel) in the New 
York City area, which suggest high spatial 
variability in some speciation concentrations 
(Ito et al. 2004). Differential measurement 
error between species that are better or worse 
represented by a single monitor may bias dif-
ferential results. However, in a time-series 
study much of the geographic variability will 
result in Berkson error (Zeger et al. 2000), 
which will not produce bias. Meanwhile, fail-
ing to capture spatial variability might weaken 
study power and attenuate estimates. Second, 
we failed to capture day-to-day variation 
in the analysis. Although we used monthly 
average species-to-PM2.5 proportions to gain 
more power, we still lost variation across days. 

Third, as mentioned above, there are data 
limitations, such as the one-in-six and one-
in-three sampling frequency for the species. 
Whether one takes the approach of Krall et al. 
(2013) and analyzes only those days, or takes 
our approach and gains power by analyzing 
every day but with more error-prone monthly 
means of the species, there is a price paid for 

Figure 2. Estimated percent difference in mortality for a 10-μg/m3 increase in PM2.5 at lag 0–1 and an 
increase of 10th or 90th percentile of distribution of monthly species-to-PM2.5 proportions, controlled for 
city–season specific temperature. 
*p ≤ 0.1 for the interaction term. **p ≤ 0.05 for the interaction term.
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Figure 3. Relationship between estimated effects 
of PM2.5 on all-cause mortality and temperature 
(controlled for smoking and alcohol consumption).
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this lack of data. Together with moderate 
correlation among the species and with total 
particle mass, this makes the task difficult. We 
do not believe this is likely to produce false 
positives, and hence we believe our  findings 
are well supported.
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